
Structural analysis (CH-314) 

Week 1 

Problems and Solutions 

Problem 1. Calculate the nominal and monoisotopic masses as well as the atomic weights of the 

following elements: a) iodine (I), b) oxygen (O), and c) lithium (Li). 

Solution: 

Iodine has only one stable isotope: 127I (126.90447 Da, 100%). Therefore, its nominal mass is 127 Da 

and both monoisotopic and relative masses equal 126.90447 Da. 

Oxygen has three stable isotopes: 16O (15.99491 Da, 99.76%), 17O (16.99913 Da, 0.04%), 
18O (17.99916 Da, 0.2%). The most abundant isotope is 16O. Therefore, the nominal mass of oxygen 

is 16 Da and its monoisotopic mass is 15.99491 Da. The relative mass (atomic weight) equals 0.9976 ∙

15.99491 Da + 0.0004 ∙ 16.99913 Da + 0.002 ∙ 17.99916 Da = 15.99932 Da. 

Lithium has two stable isotopes: 6Li (6.01512 Da, 7.5%), 7Li (7.016 Da, 92.5%). The most abundant 

isotope is 7Li. Therefore, the nominal mass of lithium is 7 Da and its monoisotopic mass is 7.016 Da. 

The relative mass (atomic weight) equals 0.075 ∙ 6.01512 Da + 0.925 ∙ 7.016 Da = 6.94093 Da. 

 

Problem 2. Calculate the nominal and monoisotopic masses as well as the molecular weights of the 

following molecules: a) sodium iodide (NaI) and b) amino acid glycine (C2H5NO2). 

Solution: 

Sodium has only one stable isotope: 23Na (22.98976 Da, 100%). Therefore, its nominal mass is 23 Da 

and both monoisotopic and relative masses equal 22.98976 Da. The masses of iodine were 

calculated in Problem 1. Thus, the masses of NaI are calculated as follows: 23 Da + 127 Da =

150 Da (nominal), 22.98976 Da + 126.90447 Da = 149.89423 Da (both monoisotopic and 

average). 

Hydrogen, carbon, and nitrogen have two stable isotopes each: 1H (1.007825 Da, 99.985%) and 
2H (2.014101 Da, 0.015%), 12C (12 Da, 98.89%) and 13C (13.00335 Da, 1.11%), 
14N (14.00307 Da, 99.64%) and 15N (15.00011 Da, 0.36%). The nominal masses are, thus, 1 Da, 12 Da, 

and 14 Da, respectively. The monoisotopic masses are 1.007825 Da, 12 Da, and 14.00307 Da, 

respectively. And the atomic weights are 0.99985 ∙ 1.007825 Da + 0.00015 ∙ 2.014101 Da =

1.007976 Da, 0.9889 ∙ 12.0 Da + 0.0111 ∙ 13.00335 Da = 12.01114 Da, 0.9964 ∙

14.00307 Da + 0.0036 ∙ 15.00011 Da = 14.00666 Da, respectively. The masses of oxygen were 

calculated in Problem 1. Thus, the masses of glycine are calculated as follows: 2 ∙ 12 Da + 5 ∙ 1 Da +

14 Da + 2 ∙ 16 = 75 Da (nominal), 2 ∙ 12.0 Da + 5 ∙ 1.007825 Da + 14.00307 Da + 2 ∙

15.99491 = 75.032015 Da (monoisotopic), 2 ∙ 12.01114 Da + 5 ∙ 1.007976 Da +

14.00666 Da + 2 ∙ 15.99932 = 75.06746 Da (average). 

 

Problem 3. Consider various types of molecular ions that can be produced from aminobenzoic acid 

(H2N-C6H4-COOH). Calculate their monoisotopic masses. 



Solution: 

Using the masses of all the elements (see Problem 1 and Problem 2) that aminobenzoic acid consists 

of, one can calculate the monoisotopic mass of neutral aminobenzoic acid: 7 ∙ 12.0 Da + 7 ∙

1.007825 Da + 14.00307 Da + 2 ∙ 15.99491 = 137.047665 Da. To calculate the masses of the 

open-shell ions, one adds or subtracts the mass of an electron (0.00054858 Da): 137.04821 Da 

(radical anion) and 137.04712 Da (radical cation). To calculate the masses of the closed-shell ions, 

one adds or subtracts the mass of a proton (1.007276 Da): 138.05494 Da (protonated) and 

136.04039 Da (deprotonated). 

 

Problem 4. Calculate the exact masses and the abundances of all hydrogen sulfide (H2S) isotopologues 

(consider only the naturally occurring isotopes). 

Solution: 

Hydrogen has two natural isotopes: 1H (1.007825 Da, 99.985%) and 2H (2.014101 Da, 0.015%), and 

sulfur has four natural isotopes: 32S (31.97207 Da, 95.0%), 33S (32.97146 Da, 0.76%), 
34S (33.96786 Da, 4.22%), 36S (35.96709 Da, 0.014%). First, consider separately isotopologues 

corresponding to hydrogen and to sulfur: 

 Exact mass Abundance   Exact mass Abundance 
1H2 2 ∙ 1.007825 Da = 2.01565 Da 0.999852 ≈ 0.9997  32S 31.97207 Da 0.95 

1H2H 1.007825 Da + 2.014101 Da = 3.021926 Da 2 ∙ 0.99985 ∙ 0.00015 ≈ 3 ∙ 10−4  33S 32.97146 Da 0.0076 
2H2 2 ∙ 2.014101 Da = 4.028202 Da 0.000152 = 2.25 ∙ 10−8  34S 33.96786 Da 0.0422 

    36S 35.96709 Da 0.00014 

Then, all the isotopologues of H2S can be generated by combining a row from the left table with a 

row from the right table. Their exact masses and abundances are sums of the masses and products 

of the abundances of the constituents, respectively. Thus, one gets: 

Isotopologue Exact mass Abundance 
1H2

32S 2.01565 Da + 31.97207 Da = 33.98772 Da 0.9997 ∙ 0.95 = 0.94972 
1H2

33S 2.01565 Da + 32.97146 Da = 34.98711 Da 0.9997 ∙ 0.0076 = 0.0076 
1H2

34S 2.01565 Da + 33.96786 Da = 35.98361 Da 0.9997 ∙ 0.0422 = 0.04219 
1H2

36S 2.01565 Da + 35.96709 Da = 37.98274 Da 0.9997 ∙ 0.00014 = 0.00014 
1H2H32S 3.021926 Da + 31.97207 Da = 34.994 Da 3 ∙ 10−4 ∙ 0.95 = 0.00029 
1H2H33S 3.021926 Da + 32.97146 Da = 35.99339 Da 3 ∙ 10−4 ∙ 0.0076 = 2.3 ∙ 10−6 
1H2H34S 3.021926 Da + 33.96786 Da = 36.98979 Da 3 ∙ 10−4 ∙ 0.0422 = 0.00001 
1H2H36S 3.021926 Da + 35.96709 Da = 38.98902 Da 3 ∙ 10−4 ∙ 0.00014 = 4.2 ∙ 10−8 

2H2
32S 4.028202 Da + 31.97207 Da = 36.00027 Da 2.25 ∙ 10−8 ∙ 0.95 = 2.1 ∙ 10−8 

2H2
32S 4.028202 Da + 32.97146 Da = 36.99966 Da 2.25 ∙ 10−8 ∙ 0.0076 = 1.7 ∙ 10−10 

2H2
32S 4.028202 Da + 33.96786 Da = 37.99606 Da 2.25 ∙ 10−8 ∙ 0.0422 = 9.5 ∙ 10−10 

2H2
32S 4.028202 Da + 35.96709 Da = 39.99529 Da 2.25 ∙ 10−8 ∙ 0.00014 = 3.1 ∙ 10−12 

Note the second most intense peak is A+2, not A+1. 

 

Problem 5. Calculate the abundances of the five lightest isotopologues 

(including the monoisotopic species) of the C90 fullerene. 

Solution: 

Carbon has two natural isotopes: 12C (98.89%) and 13C (1.11%). As the 

total number of carbon atoms in the molecule is 90, the abundances 

of the isotopologues are calculated as follows: 

 𝑝( 𝐶12
90) = 0.988990 = 0.3662 (36.6%),  



𝑝( 𝐶12
89 𝐶13 ) = 90 ∙ 0.988989 ∙ 0.0111 = 0.3699 (37.0%),  

𝑝( 𝐶12
88 𝐶13

2) =
90∙89

2
∙ 0.988988 ∙ 0.01112 = 0.1848 (18.5%),  

𝑝( 𝐶12
87 𝐶13

3) =
90∙89∙88

2∙3
∙ 0.988987 ∙ 0.01113 = 0.0608 (6.1%), 

𝑝( 𝐶12
86 𝐶13

4) =
90∙89∙88∙87

2∙3∙4
∙ 0.988986 ∙ 0.01114 = 0.0149 (1.5%).  

Note that A+1 peak is already larger than A peak and that other peaks are quite noticeable. 

 

Problem 6. For peptides, isotopic distribution is mainly due to 13C. Estimate the minimum number of 

atoms that a peptide should contain for its A+1 peak to be the most abundant. And for its A+2 peak? 

Solution: 

Consider a molecule containing 𝑛 carbon atoms (denote the abundance of 12C by 𝛼). Then, the 

abundance of its A peak equals 𝛼𝑛. And the abundance of its A+1 peak equals 𝑛 ∙ 𝛼𝑛−1 ∙ (1 − 𝛼). 

For A+1 peak to be the most abundant the following inequality should hold: 𝑛 ∙ 𝛼𝑛−1 ∙ (1 − 𝛼) >

𝛼𝑛, which means that 𝑛 should be greater than 
𝛼

1−𝛼
. For carbon, 𝛼 = 0.9889 ⇒ 𝑛 >

0.9889

0.0111
=

89.1 ⇒ 𝑛𝑚𝑖𝑛 = 90 (which is consistent with the abundances calculated in Problem 5). 

The abundance of A+2 peak equals 
𝑛∙(𝑛−1)

2
∙ 𝛼𝑛−2 ∙ (1 − 𝛼)2. For A+2 peak to be the most abundant 

the following inequality should hold: 
𝑛∙(𝑛−1)

2
∙ 𝛼𝑛−2 ∙ (1 − 𝛼)2 > 𝑛 ∙ 𝛼𝑛−1 ∙ (1 − 𝛼), which means 

that 𝑛 should be greater than 
2𝛼

1−𝛼
+ 1. For carbon, one gets 𝑛𝑚𝑖𝑛 = 180. 

From the statistical analysis of the natural abundances of amino acids, it follows that an average 

amino acid contains about 5 carbon atoms, which means that A+1 peak becomes the most abundant 

for a 18 amino acid peptide and A+2 – for a 36 amino acid peptide. 

 

Problem 7. There are two sulfur-containing standard amino acids, methionine and cysteine. 

Considering isotopic distribution only due to the isotopes of sulfur, estimate the minimum number of 

such residues that a peptide should contain for its A+2 peak to be the most abundant. 

Solution: 

Sulfur has four natural isotopes: 32S (31.97207 Da, 95.0%), 33S (32.97146 Da, 0.76%), 
34S (33.96786 Da, 4.22%), 36S (35.96709 Da, 0.014%). If a molecule contains 𝑛 sulfur atoms, the 

abundance of its A peak equals 𝛼32
𝑛 , where 𝛼32 is the abundance of 32S. For A+2 peak, there are two 

possible isotopologues: 32Sn-2
33S2 and 32Sn-1

34S1. Their abundances are  
𝑛∙(𝑛−1)

2
∙ 𝛼32

𝑛−2 ∙ 𝛼33
2  and 𝑛 ∙

𝛼32
𝑛−1 ∙ 𝛼34, respectively. For A+2 peak to be the most abundant, the following should hold: 

𝑛 ∙ (𝑛 − 1)

2
∙ 𝛼32

𝑛−2 ∙ 𝛼33
2 + 𝑛 ∙ 𝛼32

𝑛−1 ∙ 𝛼34 > 𝛼32
𝑛  

Taking into account the abundances of the isotopes of sulfur, one gets: 

3.2 ∙ 10−5 ∙ 𝑛2 + 0.0444 ∙ 𝑛 > 1 



For a peptide (𝑛 is relatively small), one may ignore the quadratic term in this equation and finally 

get 𝑛 > 22.5, which means 𝑛𝑚𝑖𝑛 = 23. 

From the statistical analysis of the natural abundances of amino acids, it follows that an average 

amino acid contains about 0.04 sulfur atoms, which means that A+2 peak becomes the most 

abundant for a peptide containing more than 550 amino acids (this is already a protein, not a 

peptide). 


